Между прочим 408й выпускался и в 412м кузове. С 69 по 73й. И он был именно с прямоугольными фарами. В салоне и технически это был чистый 408. Ну а 408й кузов был и 2х и 4х фарным.
Реставрация ретро автомобилей http://www.oldcarservice.com.ua/
Мой видео канал http://www.youtube.com/user/restavratorful?feature=mhee
Покраска авто http://pokraska-kiev.com.ua/
Мой видео канал http://www.youtube.com/user/restavratorful?feature=mhee
Покраска авто http://pokraska-kiev.com.ua/
Maximoff
не надо слепо верить написанному кем то. Людям свойственно ошибаться, иногда просто "блеснуть" в каком то вопросе и воспринимать за догму статьи того или иного коллекционера думаю не стОит.Иногда это бывает ошибкой. Я например никогда не заморачиваюсь с этой "ювелирной" точностью, и поверьте - намного проще воспринимается те или иные недостатки моделей.
не надо слепо верить написанному кем то. Людям свойственно ошибаться, иногда просто "блеснуть" в каком то вопросе и воспринимать за догму статьи того или иного коллекционера думаю не стОит.Иногда это бывает ошибкой. Я например никогда не заморачиваюсь с этой "ювелирной" точностью, и поверьте - намного проще воспринимается те или иные недостатки моделей.
Немає нічого важливішого за перемогу.
За НАШУ ПЕРЕМОГУ.
Вся московія, за «рускім корабльом!»
Наhyй!
За НАШУ ПЕРЕМОГУ.
Вся московія, за «рускім корабльом!»
Наhyй!
Не можу не погодитись з Євгеном.
Зараз пробую на дозвіллі звести докупи інформацію про моделі (реальні) автомобілів і дуже часто наштовхуюсь на інформацію деколи не те, що не достовірну, або яка розходиться в тих чи інших деталях, а деколи просто такою, яка суперечить сама собі. Особливо деколи вбивають відомості про дати, наприклад початку випуску авто чи його закінчення... Стикався з неточностями і в статтях Денісовця, коли його фактам суперечили одразу кілька інших джерел (причому не "злизаних" один з другого). Ось так то...
Зараз пробую на дозвіллі звести докупи інформацію про моделі (реальні) автомобілів і дуже часто наштовхуюсь на інформацію деколи не те, що не достовірну, або яка розходиться в тих чи інших деталях, а деколи просто такою, яка суперечить сама собі. Особливо деколи вбивають відомості про дати, наприклад початку випуску авто чи його закінчення... Стикався з неточностями і в статтях Денісовця, коли його фактам суперечили одразу кілька інших джерел (причому не "злизаних" один з другого). Ось так то...
Даремно думати, що мудрість - це превілегія старості.
А я знайшов багато невідповідностей в "списку Драйвера"-безпосередньо по моделях і рімейках, ну то й що - хлопці провели колосальну роботу,десь помилилися,десь не було можливостей дослідити...Ну і що??-Це нормально-все до купи і буде нам істинна інформація!!! 

ДОГОВОР ДОРОЖЕ ДЕНЕГ...
з повагою-ЯРОСЛАВ!
з повагою-ЯРОСЛАВ!
не помню источник, но когда то в одном из интернет-изданий увидел статью с ТТХ одной их боевых бронированных гусеничных машин СА(одна из машин что были в моей роте
). При чём там были грубые неточности, как в весе машины, тип и марка двигателя, неправильные данные по толщине брони и кол-ва боеприпасов на борту. Когда я указал неточности, меня попросили дать источник информации а сами предоставили кучу ссылок с подобной информацией. оказалось что данные "срисованы" с брони, которая была унифицирована для одной из стран Африки, и выпущена в кол-ве
12 шт. Когда я указал им на ошибку в источнике из которой они закинули инфу как обобщающую, в ответ пришло одно слово:
- Упс.. и стесняющийся смайлик. Вот так вот.
). При чём там были грубые неточности, как в весе машины, тип и марка двигателя, неправильные данные по толщине брони и кол-ва боеприпасов на борту. Когда я указал неточности, меня попросили дать источник информации а сами предоставили кучу ссылок с подобной информацией. оказалось что данные "срисованы" с брони, которая была унифицирована для одной из стран Африки, и выпущена в кол-ве
12 шт. Когда я указал им на ошибку в источнике из которой они закинули инфу как обобщающую, в ответ пришло одно слово:- Упс.. и стесняющийся смайлик. Вот так вот.
Немає нічого важливішого за перемогу.
За НАШУ ПЕРЕМОГУ.
Вся московія, за «рускім корабльом!»
Наhyй!
За НАШУ ПЕРЕМОГУ.
Вся московія, за «рускім корабльом!»
Наhyй!
Кто выпрямлял стекло на ГАЗ А поделитесь КАК?
Я пытался греть феном (для волос
) - толку никакого, хотя моделька прогрелась очень сильно - пальцем тронуть нельзя было...
Я пытался греть феном (для волос
) - толку никакого, хотя моделька прогрелась очень сильно - пальцем тронуть нельзя было...Дуже захоплюватися "прогрівами" не варто. Були випадки, коли плавилися корпуса (не конкретно цієї моделі, а взагалі АЛовські). Високих температур вони "не люблять" 

Даремно думати, що мудрість - це превілегія старості.
mykola78 писав:Дуже захоплюватися "прогрівами" не варто. Були випадки, коли плавилися корпуса (не конкретно цієї моделі, а взагалі АЛовські). Високих температур вони "не люблять"
От фена плавились?
Разве что от строительного...Зачем же так греть-то надо было? это ж явно не меньше,чем 350 градусов...
Ні
, плавили не феном. Над газом - фарбу "довипалювали", та що сама не "злізла" після розчинника. Сам того не видів, але розповіли. Просто не знали, що є така річ як змивка для фарби.
пи.си: зрештою ніхто не міряв, яка була температура
, але не думаю, що 350 градусів
, плавили не феном. Над газом - фарбу "довипалювали", та що сама не "злізла" після розчинника. Сам того не видів, але розповіли. Просто не знали, що є така річ як змивка для фарби.пи.си: зрештою ніхто не міряв, яка була температура
, але не думаю, що 350 градусівДаремно думати, що мудрість - це превілегія старості.
Конечно
, мало того, ДАЛЕКО не 350 градусов. Следующим постом "типа поумничаю" как теплотехник.(пост удалю) просто для того что бы люди увидели какие температуры можно достичь на обыкновенной газовой плите. Это же додуматься
В теплотехнике различаются следующие температуры горения газов: жаропроизводительность, калориметрическую, теоретическую и действительную (расчетную). Жаропроизводительность tж — максимальная температура продуктов полного сгорания газа в адиабатических условиях с коэффициентом избытка воздуха α = 1,0 и при температуре газа и воздуха, равной 0°C:
tж = Qн /(∑Vcp) (8.11)
где Qн — низшая теплота сгорания газа, кДж/м3; ∑Vcp — сумма произведений объемов диоксида углерода, водяного пара и азота, образовавшихся при сгорании 1 м3 газа (м3/м3), и их средних объемных теплоемкостей при постоянном давлении в пределах температур от 0°С до tж (кДж/(м3•°С).
В силу непостоянства теплоемкости газов жаропроизводительность определяется методом последовательных приближений. В качестве начального параметра берется ее значение для природного газа (≈2000°С), при α = 1,0 определяются объемы компонентов продуктов сгорания, по табл. 8.3 находится их средняя теплоемкость и затем по формуле (8.11) считается жаропроизводительность газа. Если в результате подсчета она окажется ниже или выше принятой, то задается другая температура и расчет повторяется.
Жаропроизводительность распространенных простых и сложных газов при их горении в сухом воздухе приведена в табл. 8.4.
При сжигании газа в атмосферном воздухе, содержащем около 1 вес. % влаги, жаропроизводительность снижается на 25–30°С.
Калориметрическая температура горения tK — температура, определяемая без учета диссоциации водяных паров и диоксида углерода, но с учетом фактической начальной температуры газа и воздуха. Она отличается от жаропроизводительности tж тем, что температура газа и воздуха, а также коэффициент избытка воздуха α принимаются по их действительным значениям. Определить tK можно по формуле:
tК = (Qн + qфиз)/(ΣVcp) (8.12)
где qфиз — теплосодержание (физическая теплота) газа и воздуха, отсчитываемое от 0°С, кДж/м3.
Природные и сжиженные углеводородные газы перед сжиганием обычно не нагревают, и их объем по сравнению с объемом воздуха, идущего на горение, невелик. Поэтому при определении калориметрической температуры теплосодержание газов можно не учитывать. При сжигании газов с низкой теплотой сгорания (генераторные, доменные и др.) их теплосодержание (в особенности нагретых до сжигания) оказывает весьма существенное влияние на калориметрическую температуру.
Зависимость калориметрической температуры природного газа среднего состава в воздухе с температурой 0°С и влажностью 1% от коэффициента избытка воздуха а приведена в табл. 8.5, для сжиженного углеводородного газа при его сжигании в сухом воздухе — в табл. 8.7. Данными табл. 8.5–8.7 можно с достаточной точностью руководствоваться при установлении калориметрической температуры горения других природных газов, сравнительно близких по составу, и углеводородных газов практически любого состава. При необходимости получить высокую температуру при сжигании газов с малыми коэффициентами избытка воздуха, а также для повышения КПД печей, на практике подогревают воздух, что приводит к росту калориметрической температуры (см. табл. 8.6).
Теоретическая температура горения tT — максимальная температура, определяемая аналогично калориметрической tK, но с поправкой на эндотермические (требующие теплоты) реакции диссоциации диоксида углерода и водяного пара, идущие с увеличением объема:
СО2 ‹–› СО + 0,5О2 — 283 мДж/моль (8.13)
Н2О ‹–› Н2 + 0,5О2 — 242 мДж/моль (8.14)
При высоких температурах диссоциация может привести к образованию атомарного водорода, кислорода и гидроксильных групп ОН. Кроме того, при сжигании газа всегда образуется некоторое количество оксида азота. Все эти реакции эндотермичны и приводят к снижению температуры горения.
Теоретическая температура горения может быть определена по следующей формуле:
tT = (Qн + qфиз – qдис)/(ΣVcp) (8.15)
где qдис — суммарные затраты теплоты на диссоциацию СО2 и Н2О в продуктах сгорания, кДж/м3; ΣVcp — сумма произведения объема и средней теплоемкости продуктов сгорания с учетом диссоциации на 1 м3 газа.
Как видно из табл. 8.8, при температуре до 1600°С степень диссоциации может не учитываться, и теоретическую температуру горения может принять равной калориметрической. При более высокой температуре степень диссоциации может существенно снижать температуру в рабочем пространстве. На практике особой необходимости в этом нет, теоретическую температуру горения необходимо определять только для высокотемпературных печей, работающих на предварительно нагретом воздухе (например, мартеновских). Для котельных установок в этом нужды нет.
Действительная (расчетная) температура продуктов сгорания tд — температура, которая достигается в реальных условиях в самой горячей точке факела. Она ниже теоретической и зависит от потерь теплоты в окружающую среду, степени отдачи теплоты из зоны горения излучением, растянутости процесса горения во времени и др. Действительные усредненные температуры в топках печей и котлов определяются по тепловому балансу или приближенно по теоретической или калориметрической температуре горения в зависимости от температуры в топках с введением в них экспериментально установленных поправочных коэффициентов:
tд = tтη (8.16)
где η— т. н. пирометрический коэффициент, укладывающийся в пределах:
- для качественно выполненных термических и нагревательных печей с теплоизоляцией — 0,75–0,85;
- для герметичных печей без теплоизоляции — 0,70–0,75;
- для экранированных топок котлов — 0,60–0,75.
В практике надо знать не только приведенные выше адиабатные температуры горения, но и максимальные температуры, возникающие в пламени. Их приближенные значения обычно устанавливают экспериментально методами спектрографии. Максимальные температуры, возникающие в свободном пламени на расстоянии 5–10 мм от вершины конусного фронта горения, приведены в табл. 8.9. Анализ приведенных данных показывает, что максимальные температуры в пламени меньше жаропроизводительности (за счет затрат тепла на диссоциацию Н2О и СО2 и отвода теплоты из пламенной зоны).
Таблица 8.3. Средняя объемная теплоемкость газов, кДж/(м3•°С)
Температура, °С CO2 N2 O2 CO CH4 H2 H2O (водяные пары) воздух
сухой влажный на 1 м3 сухого газа
0 1,5981 1,2970 1,3087 1,3062 1,5708 1,2852 1,4990 1,2991 1,3230
100 1,7186 1,2991 1,3209 1,3062 1,6590 1,2978 1,5103 1,3045 1,3285
200 1,8018 1,3045 1,3398 1,3146 1,7724 1,3020 1,5267 1,3142 1,3360
300 1,8770 1,3112 1,3608 1,3230 1,8984 1,3062 1,5473 1,3217 1,3465
400 1,9858 1,3213 1,3822 1,3356 2,0286 1,3104 1,5704 1,3335 1,3587
500 2,0030 1,3327 1,4024 1,3482 2,1504 1,3104 1,5943 1,3469 1,3787
600 2,0559 1,3453 1,4217 1,3650 2,2764 1,3146 1,6195 1,3612 1,3873
700 2,1034 1,3587 1,3549 1,3776 2,3898 1,3188 1,6464 1,3755 1,4020
800 2,1462 1,3717 1,4549 1,3944 2,5032 1,3230 1,6737 1,3889 1,4158
900 2,1857 1,3857 1,4692 1,4070 2,6040 1,3314 1,7010 1,4020 1,4293
1000 2,2210 1,3965 1,4822 1,4196 2,7048 1,3356 1,7283 1,4141 1,4419
1100 2,2525 1,4087 1,4902 1,4322 2,7930 1,3398 1,7556 1,4263 1,4545
1200 2,2819 1,4196 1,5063 1,4448 2,8812 1,3482 1,7825 1,4372 1,4658
1300 2,3079 1,4305 1,5154 1,4532 – 1,3566 1,8085 1,4482 1,4771
1400 2,3323 1,4406 1,5250 1,4658 – 1,3650 1,8341 1,4582 1,4876
1500 2,3545 1,4503 1,5343 1,4742 – 1,3818 1,8585 1,4675 1,4973
1600 2,3751 1,4587 1,5427 – – – 1,8824 1,4763 1,5065
1700 2,3944 1,4671 1,5511 – – – 1,9055 1,4843 1,5149
1800 2,4125 1,4746 1,5590 – – – 1,9278 1,4918 1,5225
1900 2,4289 1,4822 1,5666 – – – 1,9698 1,4994 1,5305
2000 2,4494 1,4889 1,5737 1,5078 – – 1,9694 1,5376 1,5376
2100 2,4591 1,4952 1,5809 – – – 1,9891 – –
2200 2,4725 1,5011 1,5943 – – – 2,0252 – –
2300 2,4860 1,5070 1,5943 – – – 2,0252 – –
2400 2,4977 1,5166 1,6002 – – – 2,0389 – –
2500 2,5091 1,5175 1,6045 – – – 2,0593 – –
Таблица 8.4. Жаропроизводительность газов в сухом воздухе
Простой газ Жаропроизводительность, ºС Сложный газ усредненного состава Приближенная жаропроизводительность, ºС
Водород 2235 Природный газовых месторождений 2040
Оксид углерода 2370 Природный нефтяных месторождений 2080
Метан 2043 Коксовый 2120
Этан 2097 Высокотемпературной перегонки сланцев 1980
Пропан 2110 Парокислородного дутья под давлением 2050
Бутан 2118 Генераторный из жирных углей 1750
Пентан 2119 Генераторный паровоздушного дутья из тощих топлив 1670
Этилен 2284 Сжиженный (50% С3Н4+50% С4Н10) 2115
Ацетилен 2620 Водяной 2210
Таблица 8.5. Калориметрическая и теоретическая температуры горения природного газа в воздухе с t = 0°С и влажностью 1%* в зависимости от коэффициента избытка воздуха α
Коэффициент избытка воздуха α Калориметрическая температура горения tк, °С Теоретическая температура горения tт, °С Коэффициент избытка воздуха α Калориметрическая температура горения tк, °С
1,0 2010 1920 1,33 1620
1,02 1990 1900 1,36 1600
1,03 1970 1880 1,40 1570
1,05 1940 1870 1,43 1540
1,06 1920 1860 1,46 1510
1,08 1900 1850 1,50 1470
1,10 1880 1840 1,53 1440
1,12 1850 1820 1,57 1410
1,14 1820 1790 1,61 1380
1,16 1800 1770 1,66 1350
1,18 1780 1760 1,71 1320
1,20 1760 1750 1,76 1290
1,22 1730 – 1,82 1260
1,25 1700 – 1,87 1230
1,28 1670 – 1,94 1200
1,30 1650 – 2,00 1170
Таблица 8.6. Калориметрическая температура горения природного газа tк, °С, в зависимости от коэффициента избытка сухого воздуха и его температуры (округленные значения)
Коэффициент избытка воздуха α Температура сухого воздуха, ºС
20 100 200 300 400 500 600 700 800
0,5 1380 1430 1500 1545 1680 1680 1740 1810 1860
0,6 1610 1650 1715 1780 1840 1900 1960 2015 2150
0,7 1730 1780 1840 1915 1970 2040 2100 2200 2250
0,8 1880 1940 2010 2060 2130 2200 2260 2330 2390
0,9 1980 2030 2090 2150 2220 2290 2360 2420 2500
1,0 2050 2120 2200 2250 2320 2385 2450 2510 2560
1,2 1810 1860 1930 2000 2070 2140 2200 2280 2350
1,4 1610 1660 1740 1800 2870 1950 2030 2100 2160
1,6 1450 1510 1560 1640 1730 1800 1860 1950 2030
1,8 1320 1370 1460 1520 1590 1670 1740 1830 1920
2,0 1220 1270 1360 1420 1490 1570 1640 1720 1820
Таблица 8.7. Калориметрическая температура горения tк технического пропана в сухом воздухе с t = 0°С в зависимости от коэффициента избытка воздуха α
Коэффициент избытка воздуха α Калориметрическая температура горения tк, °С Коэффициент избытка воздуха α Калориметрическая температура горения tк, °С
1,0 2110 1,45 1580
1,02 2080 1,48 1560
1,04 2050 1,50 1540
1,05 2030 1,55 1500
1,07 2010 1,60 1470
1,10 1970 1,65 1430
1,12 1950 1,70 1390
1,15 1910 1,75 1360
1,20 1840 1,80 1340
1,25 1780 1,85 1300
1,27 1750 1,90 1270
1,30 1730 1,95 1240
1,35 1670 2,00 1210
1,40 1630 2,10 1170
Таблица 8.8. Степень диссоциации водяного пара H2O и диоксида углерода CO2 в зависимости от парциального давления
Температура, ºС Парциальное давление, МПа
0,004 0,006 0,008 0,010 0,012 0,014 0,016 0,018 0,020 0,025 0,030 0,040
Водяной пар H2O
1600 0,85 0,75 0,65 0,60 0,58 0,56 0,54 0,52 0,50 0,48 0,46 0,42
1700 1,45 1,27 1,16 1,08 1,02 0,95 0,90 0,85 0,8 0,76 0,73 0,67
1800 2,40 2,10 1,90 1,80 1,70 1,60 1,53 1,46 1,40 1,30 1,25 1,15
1900 4,05 3,60 3,25 3,0 2,85 2,70 2,65 2,50 2,40 2,20 2,10 1,9
2000 5,75 5,05 4,60 4,30 4,0 3,80 3,55 3,50 3,40 3,15 2,95 2,65
2100 8,55 7,50 6,80 6,35 6,0 5,70 5,45 5,25 5,10 4,80 4,55 4,10
2200 12,3 10,8 9,90 9,90 8,80 8,35 7,95 7,65 7,40 6,90 6,50 5,90
2300 16,0 15,0 13,7 12,9 12,2 11,6 11,1 10,7 10,4 9,6 9,1 8,4
2400 22,5 20,0 18,4 17,2 16,3 15,6 15,0 14,4 13,9 13,0 12,2 11,2
2500 28,5 25,6 23,5 22,1 20,9 20,0 19,3 18,6 18,0 16,8 15,9 14,6
3000 70,6 66,7 63,8 61,6 59,6 58,0 56,5 55,4 54,3 51,9 50,0 47,0
Диоксид углерода CO2
1500 0,5 0,5 0,5 0,5 0,5 0,5 0,4 0,4 0,4 0,4 0,4 –
1600 2,0 1,8 1,6 1,5 1,45 1,4 1,35 1,3 1,25 1,2 1,1
1700 3,8 3,3 3,0 2,8 2,6 2,5 2,4 2,3 2,2 2,0 1,9
1800 6,3 5,5 5,0 4,6 4,4 4,2 4,0 3,8 3,7 3,5 3,3
1900 10,1 8,9 8,1 7,6 7,2 6,8 6,5 6,3 6,1 5,6 5,3
2000 16,5 14,6 13,4 12,5 11,8 11,2 10,8 10,4 10,0 9,4 8,8
2100 23,9 21,3 19,6 18,3 17,3 16,5 15,9 15,3 14,9 13,9 13,1
2200 35,1 31,5 29,2 27,5 26,1 25,0 24,1 23,3 22,6 21,2 20,1
2300 44,7 40,7 37,9 35,9 34,3 32,9 31,8 30,9 30,0 28,2 26,9
2400 56,0 51,8 48,8 46,5 44,6 43,1 41,8 40,6 39,6 37,5 35,8
2500 66,3 62,2 59,3 56,9 55,0 53,4 52,0 50,7 49,7 47,3 45,4
3000 94,9 93,9 93,1 92,3 91,7 90,6 90,1 89,6 88,5 87,6 86,8
Таблица 8.9. Максимальные температуры, возникающие в свободном пламени, °С
Газ Газовоздушная смесь, близкая по составу к стехиометрической Газокиcлородная смесь
H2 2045 2660
CO 2100 2920
CH4 1870 2740
C2H6 1890 –
C3H8 1920 2780
C4H10 1890 –
C2H2 2320 3000
, мало того, ДАЛЕКО не 350 градусов. Следующим постом "типа поумничаю" как теплотехник.(пост удалю) просто для того что бы люди увидели какие температуры можно достичь на обыкновенной газовой плите. Это же додуматься
В теплотехнике различаются следующие температуры горения газов: жаропроизводительность, калориметрическую, теоретическую и действительную (расчетную). Жаропроизводительность tж — максимальная температура продуктов полного сгорания газа в адиабатических условиях с коэффициентом избытка воздуха α = 1,0 и при температуре газа и воздуха, равной 0°C:
tж = Qн /(∑Vcp) (8.11)
где Qн — низшая теплота сгорания газа, кДж/м3; ∑Vcp — сумма произведений объемов диоксида углерода, водяного пара и азота, образовавшихся при сгорании 1 м3 газа (м3/м3), и их средних объемных теплоемкостей при постоянном давлении в пределах температур от 0°С до tж (кДж/(м3•°С).
В силу непостоянства теплоемкости газов жаропроизводительность определяется методом последовательных приближений. В качестве начального параметра берется ее значение для природного газа (≈2000°С), при α = 1,0 определяются объемы компонентов продуктов сгорания, по табл. 8.3 находится их средняя теплоемкость и затем по формуле (8.11) считается жаропроизводительность газа. Если в результате подсчета она окажется ниже или выше принятой, то задается другая температура и расчет повторяется.
Жаропроизводительность распространенных простых и сложных газов при их горении в сухом воздухе приведена в табл. 8.4.
При сжигании газа в атмосферном воздухе, содержащем около 1 вес. % влаги, жаропроизводительность снижается на 25–30°С.
Калориметрическая температура горения tK — температура, определяемая без учета диссоциации водяных паров и диоксида углерода, но с учетом фактической начальной температуры газа и воздуха. Она отличается от жаропроизводительности tж тем, что температура газа и воздуха, а также коэффициент избытка воздуха α принимаются по их действительным значениям. Определить tK можно по формуле:
tК = (Qн + qфиз)/(ΣVcp) (8.12)
где qфиз — теплосодержание (физическая теплота) газа и воздуха, отсчитываемое от 0°С, кДж/м3.
Природные и сжиженные углеводородные газы перед сжиганием обычно не нагревают, и их объем по сравнению с объемом воздуха, идущего на горение, невелик. Поэтому при определении калориметрической температуры теплосодержание газов можно не учитывать. При сжигании газов с низкой теплотой сгорания (генераторные, доменные и др.) их теплосодержание (в особенности нагретых до сжигания) оказывает весьма существенное влияние на калориметрическую температуру.
Зависимость калориметрической температуры природного газа среднего состава в воздухе с температурой 0°С и влажностью 1% от коэффициента избытка воздуха а приведена в табл. 8.5, для сжиженного углеводородного газа при его сжигании в сухом воздухе — в табл. 8.7. Данными табл. 8.5–8.7 можно с достаточной точностью руководствоваться при установлении калориметрической температуры горения других природных газов, сравнительно близких по составу, и углеводородных газов практически любого состава. При необходимости получить высокую температуру при сжигании газов с малыми коэффициентами избытка воздуха, а также для повышения КПД печей, на практике подогревают воздух, что приводит к росту калориметрической температуры (см. табл. 8.6).
Теоретическая температура горения tT — максимальная температура, определяемая аналогично калориметрической tK, но с поправкой на эндотермические (требующие теплоты) реакции диссоциации диоксида углерода и водяного пара, идущие с увеличением объема:
СО2 ‹–› СО + 0,5О2 — 283 мДж/моль (8.13)
Н2О ‹–› Н2 + 0,5О2 — 242 мДж/моль (8.14)
При высоких температурах диссоциация может привести к образованию атомарного водорода, кислорода и гидроксильных групп ОН. Кроме того, при сжигании газа всегда образуется некоторое количество оксида азота. Все эти реакции эндотермичны и приводят к снижению температуры горения.
Теоретическая температура горения может быть определена по следующей формуле:
tT = (Qн + qфиз – qдис)/(ΣVcp) (8.15)
где qдис — суммарные затраты теплоты на диссоциацию СО2 и Н2О в продуктах сгорания, кДж/м3; ΣVcp — сумма произведения объема и средней теплоемкости продуктов сгорания с учетом диссоциации на 1 м3 газа.
Как видно из табл. 8.8, при температуре до 1600°С степень диссоциации может не учитываться, и теоретическую температуру горения может принять равной калориметрической. При более высокой температуре степень диссоциации может существенно снижать температуру в рабочем пространстве. На практике особой необходимости в этом нет, теоретическую температуру горения необходимо определять только для высокотемпературных печей, работающих на предварительно нагретом воздухе (например, мартеновских). Для котельных установок в этом нужды нет.
Действительная (расчетная) температура продуктов сгорания tд — температура, которая достигается в реальных условиях в самой горячей точке факела. Она ниже теоретической и зависит от потерь теплоты в окружающую среду, степени отдачи теплоты из зоны горения излучением, растянутости процесса горения во времени и др. Действительные усредненные температуры в топках печей и котлов определяются по тепловому балансу или приближенно по теоретической или калориметрической температуре горения в зависимости от температуры в топках с введением в них экспериментально установленных поправочных коэффициентов:
tд = tтη (8.16)
где η— т. н. пирометрический коэффициент, укладывающийся в пределах:
- для качественно выполненных термических и нагревательных печей с теплоизоляцией — 0,75–0,85;
- для герметичных печей без теплоизоляции — 0,70–0,75;
- для экранированных топок котлов — 0,60–0,75.
В практике надо знать не только приведенные выше адиабатные температуры горения, но и максимальные температуры, возникающие в пламени. Их приближенные значения обычно устанавливают экспериментально методами спектрографии. Максимальные температуры, возникающие в свободном пламени на расстоянии 5–10 мм от вершины конусного фронта горения, приведены в табл. 8.9. Анализ приведенных данных показывает, что максимальные температуры в пламени меньше жаропроизводительности (за счет затрат тепла на диссоциацию Н2О и СО2 и отвода теплоты из пламенной зоны).
Таблица 8.3. Средняя объемная теплоемкость газов, кДж/(м3•°С)
Температура, °С CO2 N2 O2 CO CH4 H2 H2O (водяные пары) воздух
сухой влажный на 1 м3 сухого газа
0 1,5981 1,2970 1,3087 1,3062 1,5708 1,2852 1,4990 1,2991 1,3230
100 1,7186 1,2991 1,3209 1,3062 1,6590 1,2978 1,5103 1,3045 1,3285
200 1,8018 1,3045 1,3398 1,3146 1,7724 1,3020 1,5267 1,3142 1,3360
300 1,8770 1,3112 1,3608 1,3230 1,8984 1,3062 1,5473 1,3217 1,3465
400 1,9858 1,3213 1,3822 1,3356 2,0286 1,3104 1,5704 1,3335 1,3587
500 2,0030 1,3327 1,4024 1,3482 2,1504 1,3104 1,5943 1,3469 1,3787
600 2,0559 1,3453 1,4217 1,3650 2,2764 1,3146 1,6195 1,3612 1,3873
700 2,1034 1,3587 1,3549 1,3776 2,3898 1,3188 1,6464 1,3755 1,4020
800 2,1462 1,3717 1,4549 1,3944 2,5032 1,3230 1,6737 1,3889 1,4158
900 2,1857 1,3857 1,4692 1,4070 2,6040 1,3314 1,7010 1,4020 1,4293
1000 2,2210 1,3965 1,4822 1,4196 2,7048 1,3356 1,7283 1,4141 1,4419
1100 2,2525 1,4087 1,4902 1,4322 2,7930 1,3398 1,7556 1,4263 1,4545
1200 2,2819 1,4196 1,5063 1,4448 2,8812 1,3482 1,7825 1,4372 1,4658
1300 2,3079 1,4305 1,5154 1,4532 – 1,3566 1,8085 1,4482 1,4771
1400 2,3323 1,4406 1,5250 1,4658 – 1,3650 1,8341 1,4582 1,4876
1500 2,3545 1,4503 1,5343 1,4742 – 1,3818 1,8585 1,4675 1,4973
1600 2,3751 1,4587 1,5427 – – – 1,8824 1,4763 1,5065
1700 2,3944 1,4671 1,5511 – – – 1,9055 1,4843 1,5149
1800 2,4125 1,4746 1,5590 – – – 1,9278 1,4918 1,5225
1900 2,4289 1,4822 1,5666 – – – 1,9698 1,4994 1,5305
2000 2,4494 1,4889 1,5737 1,5078 – – 1,9694 1,5376 1,5376
2100 2,4591 1,4952 1,5809 – – – 1,9891 – –
2200 2,4725 1,5011 1,5943 – – – 2,0252 – –
2300 2,4860 1,5070 1,5943 – – – 2,0252 – –
2400 2,4977 1,5166 1,6002 – – – 2,0389 – –
2500 2,5091 1,5175 1,6045 – – – 2,0593 – –
Таблица 8.4. Жаропроизводительность газов в сухом воздухе
Простой газ Жаропроизводительность, ºС Сложный газ усредненного состава Приближенная жаропроизводительность, ºС
Водород 2235 Природный газовых месторождений 2040
Оксид углерода 2370 Природный нефтяных месторождений 2080
Метан 2043 Коксовый 2120
Этан 2097 Высокотемпературной перегонки сланцев 1980
Пропан 2110 Парокислородного дутья под давлением 2050
Бутан 2118 Генераторный из жирных углей 1750
Пентан 2119 Генераторный паровоздушного дутья из тощих топлив 1670
Этилен 2284 Сжиженный (50% С3Н4+50% С4Н10) 2115
Ацетилен 2620 Водяной 2210
Таблица 8.5. Калориметрическая и теоретическая температуры горения природного газа в воздухе с t = 0°С и влажностью 1%* в зависимости от коэффициента избытка воздуха α
Коэффициент избытка воздуха α Калориметрическая температура горения tк, °С Теоретическая температура горения tт, °С Коэффициент избытка воздуха α Калориметрическая температура горения tк, °С
1,0 2010 1920 1,33 1620
1,02 1990 1900 1,36 1600
1,03 1970 1880 1,40 1570
1,05 1940 1870 1,43 1540
1,06 1920 1860 1,46 1510
1,08 1900 1850 1,50 1470
1,10 1880 1840 1,53 1440
1,12 1850 1820 1,57 1410
1,14 1820 1790 1,61 1380
1,16 1800 1770 1,66 1350
1,18 1780 1760 1,71 1320
1,20 1760 1750 1,76 1290
1,22 1730 – 1,82 1260
1,25 1700 – 1,87 1230
1,28 1670 – 1,94 1200
1,30 1650 – 2,00 1170
Таблица 8.6. Калориметрическая температура горения природного газа tк, °С, в зависимости от коэффициента избытка сухого воздуха и его температуры (округленные значения)
Коэффициент избытка воздуха α Температура сухого воздуха, ºС
20 100 200 300 400 500 600 700 800
0,5 1380 1430 1500 1545 1680 1680 1740 1810 1860
0,6 1610 1650 1715 1780 1840 1900 1960 2015 2150
0,7 1730 1780 1840 1915 1970 2040 2100 2200 2250
0,8 1880 1940 2010 2060 2130 2200 2260 2330 2390
0,9 1980 2030 2090 2150 2220 2290 2360 2420 2500
1,0 2050 2120 2200 2250 2320 2385 2450 2510 2560
1,2 1810 1860 1930 2000 2070 2140 2200 2280 2350
1,4 1610 1660 1740 1800 2870 1950 2030 2100 2160
1,6 1450 1510 1560 1640 1730 1800 1860 1950 2030
1,8 1320 1370 1460 1520 1590 1670 1740 1830 1920
2,0 1220 1270 1360 1420 1490 1570 1640 1720 1820
Таблица 8.7. Калориметрическая температура горения tк технического пропана в сухом воздухе с t = 0°С в зависимости от коэффициента избытка воздуха α
Коэффициент избытка воздуха α Калориметрическая температура горения tк, °С Коэффициент избытка воздуха α Калориметрическая температура горения tк, °С
1,0 2110 1,45 1580
1,02 2080 1,48 1560
1,04 2050 1,50 1540
1,05 2030 1,55 1500
1,07 2010 1,60 1470
1,10 1970 1,65 1430
1,12 1950 1,70 1390
1,15 1910 1,75 1360
1,20 1840 1,80 1340
1,25 1780 1,85 1300
1,27 1750 1,90 1270
1,30 1730 1,95 1240
1,35 1670 2,00 1210
1,40 1630 2,10 1170
Таблица 8.8. Степень диссоциации водяного пара H2O и диоксида углерода CO2 в зависимости от парциального давления
Температура, ºС Парциальное давление, МПа
0,004 0,006 0,008 0,010 0,012 0,014 0,016 0,018 0,020 0,025 0,030 0,040
Водяной пар H2O
1600 0,85 0,75 0,65 0,60 0,58 0,56 0,54 0,52 0,50 0,48 0,46 0,42
1700 1,45 1,27 1,16 1,08 1,02 0,95 0,90 0,85 0,8 0,76 0,73 0,67
1800 2,40 2,10 1,90 1,80 1,70 1,60 1,53 1,46 1,40 1,30 1,25 1,15
1900 4,05 3,60 3,25 3,0 2,85 2,70 2,65 2,50 2,40 2,20 2,10 1,9
2000 5,75 5,05 4,60 4,30 4,0 3,80 3,55 3,50 3,40 3,15 2,95 2,65
2100 8,55 7,50 6,80 6,35 6,0 5,70 5,45 5,25 5,10 4,80 4,55 4,10
2200 12,3 10,8 9,90 9,90 8,80 8,35 7,95 7,65 7,40 6,90 6,50 5,90
2300 16,0 15,0 13,7 12,9 12,2 11,6 11,1 10,7 10,4 9,6 9,1 8,4
2400 22,5 20,0 18,4 17,2 16,3 15,6 15,0 14,4 13,9 13,0 12,2 11,2
2500 28,5 25,6 23,5 22,1 20,9 20,0 19,3 18,6 18,0 16,8 15,9 14,6
3000 70,6 66,7 63,8 61,6 59,6 58,0 56,5 55,4 54,3 51,9 50,0 47,0
Диоксид углерода CO2
1500 0,5 0,5 0,5 0,5 0,5 0,5 0,4 0,4 0,4 0,4 0,4 –
1600 2,0 1,8 1,6 1,5 1,45 1,4 1,35 1,3 1,25 1,2 1,1
1700 3,8 3,3 3,0 2,8 2,6 2,5 2,4 2,3 2,2 2,0 1,9
1800 6,3 5,5 5,0 4,6 4,4 4,2 4,0 3,8 3,7 3,5 3,3
1900 10,1 8,9 8,1 7,6 7,2 6,8 6,5 6,3 6,1 5,6 5,3
2000 16,5 14,6 13,4 12,5 11,8 11,2 10,8 10,4 10,0 9,4 8,8
2100 23,9 21,3 19,6 18,3 17,3 16,5 15,9 15,3 14,9 13,9 13,1
2200 35,1 31,5 29,2 27,5 26,1 25,0 24,1 23,3 22,6 21,2 20,1
2300 44,7 40,7 37,9 35,9 34,3 32,9 31,8 30,9 30,0 28,2 26,9
2400 56,0 51,8 48,8 46,5 44,6 43,1 41,8 40,6 39,6 37,5 35,8
2500 66,3 62,2 59,3 56,9 55,0 53,4 52,0 50,7 49,7 47,3 45,4
3000 94,9 93,9 93,1 92,3 91,7 90,6 90,1 89,6 88,5 87,6 86,8
Таблица 8.9. Максимальные температуры, возникающие в свободном пламени, °С
Газ Газовоздушная смесь, близкая по составу к стехиометрической Газокиcлородная смесь
H2 2045 2660
CO 2100 2920
CH4 1870 2740
C2H6 1890 –
C3H8 1920 2780
C4H10 1890 –
C2H2 2320 3000
Немає нічого важливішого за перемогу.
За НАШУ ПЕРЕМОГУ.
Вся московія, за «рускім корабльом!»
Наhyй!
За НАШУ ПЕРЕМОГУ.
Вся московія, за «рускім корабльом!»
Наhyй!